
The CIPRES Workbench: A Flexible Framework for
Creating Science Gateways

Mark A. Miller, Terri Schwartz, Paul Hoover, Kenneth Yoshimoto, Subhashini Sivagnanam, and
Amit Majumdar

San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Drive La Jolla CA 92093-0505
mmiller,terri,phoover,kenneth,majumdar@sdsc.edu

ABSTRACT

Here we describe the CIPRES Workbench (CW), an open source
software framework for creating new science gateways with
minimal overhead. The CW is a web application that can be
deployed on a modest server, and can be configured to submit
command line instructions to any resource where the application
has submission privileges. It is designed to be highly configurable
/ customizable, and supports GUI-based access to HPC resources
through a web browser interface as well as programmatic access
via a ReSTful API. Using browser access, the CW architecture
creates an environment with secure user accounts where user
input data, job results, and job provenance are stored. Using
ReSTful access, it allows users with a registered a client
application to deliver command lines to analytical codes and
return of results from any compute resource. A development effort
is underway to make allow the CW to submit jobs via the Science
Gateways as a Platform (SciGaP) services hosted at Indiana
University.

Categories and Subject Descriptors
 D.2.2 [Software Engineering]: Design Tools and Techniques –
Modules and interfaces

General Terms
Design.

Keywords
Software, Workbench, Science Gateway, ReSTful services. Open
Source, SciGaP.

1. INTRODUCTION
Making it easy for domain researchers to access HPC and data
resources is a difficult problem, and one that is of increasing
importance. As digital tools become ever more sensitive, and
sensors become more numerous, there is an ongoing explosion in
the amount of data available for analysis. This in turn drives an
increasing need for easy access to computational resources that
are adequate for the data analysis jobs at hand.

Science Gateways are domain-focused web applications that
address this problem by providing access to community data
resources and/or analytical codes run on large HPC resources [1].

Typically, Gateways provide access through a web browser and
serve entire communities of practice that require a common set of
analytical codes and/or data. A large number of Science Gateways
have been created over the past decade, each addressing the needs
of a specific community [2, 3]. In general, these Gateways have
been created independently through separate, and often significant
software development efforts.

An ongoing issue for Science Gateways is the question of how
best to simplify the task of Gateway development. All Gateways
require a common feature set (login, data storage, job submission,
data retrieval, etc), as well as some features that are unique to a
particular community of practice (legacy codes, interactive
analytical interfaces, etc). There have been several significant
efforts to create software infrastructure that provides the common
infrastructure required by all gateways, while at the same time
facilitating the addition of custom features required for a specific
domain. Exhaustive review of these efforts is beyond the scope of
the paper, but here we note some exemplars of development
efforts to date.

One approach to creating a generic Gateway infrastructure relies
on a self-contained gateway software package that creates a
Gateway application (e.g. Galaxy [4], HubZero [5], and the
Workbench Framework [6]). The Galaxy platform and the
Workbench Framework are organized around submission of
command line instructions and data queries to any available
remote data or compute resource. The HubZero package, on the
other hand, presented each user with a provisioned virtual
machine, and most operations were carried out within that
context. It has since been modified to submit jobs to remote
resources in some instances. All three platforms were designed to
make tool addition scalable, through different techniques. The
HubZero and Galaxy platforms have been used to create
Gateways outside of their original domain [7-9], and several
implementations of the Workbench Framework have been created
[10, 11]. The distributable web server design has succeeded in
simplifying Gateway creation, but each installation is distinct, and
must be installed and maintained by dedicated developers/system
administrators on local hardware.

The second design philosophy involves creating a set of core Web
services that provide the common core functionalities required by
all Gateways. In this design paradigm, functionalities required by
all Gateways are provided through a central server as a set of
services that can be consumed by a client created by the Gateway
creator. This philosophy minimizes the costs associated with
middleware development and system administration, but
individual Gateway developers must create a domain-specific
client interface that consumes the services, and provides its users
with access. The Agave [12], NEWT [13], and SciGaP
(http://scigap.org/) services are provided from a central location
under the control of project administrators. However, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

underlying NEWT framework is publicly available, which allows
Gateway developers to create their own custom RESTful access
outside of the NERSC environment.

Each of these two design philosophies has merit. Gateways can be
created very quickly by using a generic, customizable interface to
access centralized infrastructure services offered by the providers
such as SciGaP, NEWT and Agave. This strategy eliminates the
cost of creating and managing middleware for job submissions for
individual gateways. On the other hand, self-contained gateway
installations are not limited to resources and capabilities supported
by the available RESTful service providers.

Here we describe an attempt to capture the best of both worlds, by
adapting an existing framework for gateway development [6] to
create a generic infrastructure that can support access both to
generic compute or data resources, and to public ReSTful job
submission services. This strategy is intended to provide
maximum flexibility to gateway developers so they can take
advantage of tools and capabilities available through ReSTful as
these services expand and mature.

2. Design/Architecture
The CIPRES Science Gateway was created through two loosely
connected Java software packages: the Workbench Framework
(WF), which manages the executive functions of CIPRES, and a
Portal Application (PA1), which is a Struts-based application that
allows users to configure/create submissions and manage results
via the WF through a browser interface [11]. The WF/PA1 design
was intended to support delivery of command lines and database
queries to any available remote resource without regard for its
location or domain. All specific information about supported
codes and databases is contained in a central registry, making the
PA1/WF a generic, domain-independent software framework for
Science Gateways. Accordingly, the PA1/WA have been used by
other groups to create the Neuroscience [14] and PoPLAR [10]
Science Gateways, as well as the Next Generation Biology
Workbench for which it was created [15].

The WF has evolved significantly over the past six years in
response to a growing user population, increased traffic and job
submission loads, and growing size of input and output files. This
evolution has driven the development of many improved features
and capabilities [16, 17]. In addition, we recently released a public
RESTful API to permit programmatic access to CIPRES for job
submissions [18]. The RESTful services are provided via a second
Portal Application (PA2) based on Jersey [19]. PA2 validates and
submits instructions and input files from user client applications
to the WF. As a result, developers outside the CIPRES project
can access XSEDE or local HPC resources through client
applications, whether it be a sophisticated desktop application like
Mesquite [20], a web application like MorphoBank [21] or ViPR
[22], or a simple ad hoc script created by user. Details of the
RESTful API implementation can be found elsewhere [18].

As the software package used by CIPRES is now quite stable, and
highly evolved for high traffic gateway use, we elected to refactor
it into a distributable open source software package. The new
package is designated as the CIPRES Workbench (CW), and it is
designed to facilitate installation and customization of a gateway
application in service of any domain. The goal in creating an open
source project is to make it possible for us to share advances and
improvements made by ourselves and other users of the software.
The software will be useful for Gateways that require robust
execution of command line instructions to codes run on a variety
of remote execution hosts.

2.1 Design of the CIPRES Workbench
As noted above, the CIPRES Workbench package consists of a
JAVA software development kit (WF) and two separate JAVA
portal applications, one that provides access through a browser
interface (PA1), and one that supports access through a RESTful
application programmer interface (PA2). The overall design is
represented in Figure 1. The CW requires a relational database to
store user information, uploaded data, job statistics, and results,
but it is agnostic on the specific RDBMS. Jobs are submitted to
any remote execution hosts where submission privileges have
been established. The design also allows for the submission of
queries to remote databases.

2.2 Workflow for the CIPRES Workbench

The basic workflow for the CW is shown in Figure 2. User access
to the WF is provided by PA1 and PA2. Users of the browser
interface (PA1) configure job submissions via a set of web forms.
One or more web forms manage submissions to each code
supported by the CW. Each web form is generated at compile time
from a <tool>.xml document in the WF (see below). The xml tool
description is based on the PISE specification [23]. The web
forms provide JavaScript controls that guide and inform users in
job configuration, and prevent submission of commands that are
nonsensical, or will fail immediately.

For submissions to the ReSTful API (PA2), a client application or
script must submit essentially the same parameters and input files
that the web form in PA1 would provide. These parameters are
validated on the server, and if valid, are used to populate the
parameter map to configure a given run and generate a command
line. Submissions from PA2 are subject to the same validation
processes as submissions from PA1, using code generated from
the <tool>.xml file; the same auxiliary files and command lines
are created by the WF.

On submission from either PA1 or PA2, a "job handle" is assigned
to uniquely identify the job, and job information is entered into
the Task table of the CIPRES database. Submitted key value pairs
are transmitted to the WF where they are validated. The validation
code is generated from the same <tool>.xml documents that are
used to create web forms used by PA1.

The selections made in the web form or submitted by PA2,
together with information in the <tool>.xml document determine
run configuration: number of nodes, cores, which parallel version
of the code is called, which command line options are set, etc. The
parameter map and <tool>.xml are also used to create any

Figure 1. Overall design of the CIPRES Workbench

Workbench
Framework

Portal
Application1

Portal
Application2

Execution Hosts

Database

Browser
Client

Software

additional files required for the job run. The final step in job
submission step is to create a RunningTask table entry for the job
that contains the jobhandle and has its status set to "new".

Next, the job must be submitted to the execution host. Remote job
execution is managed by a set of three daemons. The submitJobD
daemon manages file staging and submission. SubmitJobD selects
all Running Task table entries with status “new” and uses a thread
pool to process them. For each job, the daemon creates a working
directory with the name “jobhandle” on the execution host using
the FileHandler class specified in the tool registry. (The WF
includes a variety of FileHandlers such as LocalFileHandler,
GridFtpFileHandler, SFTPFileHandler; it is easy to create
FileHandlers for additional protocols.) The submitJobD daemon
copies input files from the Task table of the database into the
working directory, and creates an additional file named
_JOBINFO.TXT that contains the name and email address of the
user running the job, the jobhandle, and some additional
information. If the execution host has a job scheduler, a custom
“submit” script must be installed on the host to create a
submission script for appropriate for that host’s scheduler and to
submit the script to the scheduler (e.g. for Torque, qsub is used).
After creating the working directory and staging the input files,
submitJobD uses the ProcessWorker class specified in the tool
registry (see below) to run the "submit" script on the execution
host (the CW includes ProcessWorker's for a variety of schedulers
and communication protocols, and new ones are fairly easily
added). On successful submission, the "submit" script prints the
job ID from the scheduling system on stdout, SubmitJobD reads
the jobID and updates the Running Task entry with the jobID
(providing the RunningTask entry with both the CIPRES job

handle and the remote system's job ID) and sets the status to
"submitted".

Monitoring Job Status on Execution Hosts/Returning Results

Job status notification is managed by two methods. The primary
mechanism occurs when a job completes: the job submission
script issues a curl command back to a servlet in the web
application when the job stops running. The servlet changes the
Running Task's status to "done". A secondary mechanism uses
daemon, CheckJobsD, which was implemented to make results
notification robust against outages of the server or the execution
host, which would disrupt the primary notification mechanism.

CheckJobsD monitors the progress of running jobs by selecting all
Running Task entries with status = "submitted" and querying the
execution hosts about those jobs. It does this by using ssh or
gsissh to run a custom "check" script on the remote hosts, which
uses qstat (or the appropriate command for the scheduler) to
determine which of the jobs are finished and returns their IDs.
When a job is finished, checkJobsD changes its status in the
Running Task table to “done”.

A third daemon, loadResultsD, selects all Running Task entries
with status = "done". LoadResultsD, uses a FileHandler to
transfer the results to the database and delete the RunningTask
table entry. Before transferring results, the loadResultsD daemon
examines the size of working directory to be transferred. If the
working directory is below a configurable size limit (in the case
of CIPRES this is 4GB) the directory is transferred to the database
for indefinite storage. If the working directory contents are larger
than the specified limit, the results are instead moved to an NFS
file directory outside of the application for separate processing.
For CIPRES, large results directories are managed by a script that

Figure 2. CIPRES Workflow for Job Submission

Web Application

CIPRES DB

Execution Hosts

Running tasks

Tasks

Create/validate
new task

User

Task Update servlet

Create Task
Forms

curl, task is done

checkJobsD

1. Find all RunningTasks
with status=NEW.

2. Ask execution host if
job is done

3. If yes, set
RunningTasks
status=DONE.

ssView Task
Form

loadResultsD

1. Find all RunningTasks
with status=DONE.
2. Transfer results to

CIPRES DB and update
Task’s status.
3. Remove RunningTask
table entry.

submitJobsD

1. Find all “new” tasks

2. Submit to correct
execution host

3. Set RunningTask’s
status = SUBMITTED.Display tasks

In GUI

Submit

Update
status

Change status in
Running task table
to DONE.

Workbench Framework

Validate,
Create configuration files

Store in Tasks table.
If valid, enter in
RunningTasks table
with status=NEW.

zips large results directories every 6 hours and moves them to a
cloud storage resource for user access. When loadResultsD
detects a large working directory, it posts a message to the user
with a url where they can download the zip archive from the cloud
resource via http. The zip archives of large results directories are
retained for a period of one month.

After results are transferred to the database, the working
directories on the execution host and their contents are retained
for a specified period of time (2 weeks) before they are deleted by
a cron job. The availability of the working directories after job
completion simplifies the administrator’s task in to debugging
jobs that fail due to system and user errors. Frequencies of large
file movement and times for archive retention are configured
locally as cron jobs.

2.3 Installing and configuring the CW
The CW platform is designed to make creating a new Gateway as
simple as possible. The basic procedure involves user
configuration of a set of build properties that identify the location
of key resources required by the application to operate in the
designated environment. The package cleanly separates the
generic executive capabilities of the WF from those specific to the
Science Gateway being created.

Prerequisites:
Installation of the CW application requires Maven 3.0 or newer,
Tomcat 7.0, Python 2.7, Java 1.7, and MySQL 5.5.5 or newer.
Use of virtualenv is recommended to avoid permissions problems,
as the build process involves the installation of python libraries. It
also requires a relational database management system that uses
SQL (the schema is found in the distribution at
source/sdk/scripts/database/cipres.sql) and a web server where
static content can be presented.

Set-up:
Creating a new gateway requires creation of a config directory
(typically named <newGateway>-config). The config directory
contains a build.properties file and all other information required
for the build process. In addition, a set of five directories must be
created for scripts, logs, a tool registry, database documents, and
control of submission to specific tools/execution hosts. An
example template is provided with the distribution that can be
installed to conduct basic testing of the installation. The example
can be copied and modified to create new Gateway applications.
The build.properties file provides compile time properties that are
used to configure the application for the local environment. A
minimum of thirty values must be edited by the user to complete a
new installation. The build.properties specifies paths to the five
required directories noted above, the application’s base url, the url
and login information for the database instance, and properties of
all local and remote submission hosts. Other build properties
specified in this file include: availability and base url for REST
access, usage limits, mail server information for notifications,
polling intervals for daemons, Globus credential information,
build script information, and information about submission hosts
and tools that are known to this installation. The property values
read from the build.properties file supplement and/or override
information in the common code base. The build.properties file is
customizable; a developer can add any needed properties to this
file and reference those properties in resource files (e.g. the tool
registry, see below).

Configuring New Execution Hosts.

The tools that the gateway can run and the execution hosts they
run on are specified in a tool registry located at <newGateway>-
config/sdk/src/main/resources/tool/tool-registry.cfg.xml.

To add an execution host, one must add a ToolResource element
to the registry. For example, the CIPRES tool registry contains the
following entry for Gordon:

Rather than hardcoding locations, class names, and account
information in the tool registry, one may use properties and add
them to the application build.properties file. For example, the
registry entry shown above has these corresponding properties in
CIPRES's build.properties:

These properties specify where working directories will be created
on Gordon, the name of the file transfer host, login information,
the location of an environment initialization script, the names of
the "submit", "check" and "delete" scripts, and the FileHandler
class to use with Gordon. The submit and check scripts are used
by the daemons described above, while the delete script is
invoked by a method in the WF when a user cancels a submitted
job.

Job submission requires installation of several scripts to be on the
execution host. Although the scripts are not part of the
distribution, examples are included in the distribution, as they are
meant to be customized. The example scripts include the
“submit", "delete" and "check" scripts mentioned above, and an
optional configuration file (typically a shell script to be
"sourced"). Normally this script will set the PATH environment
variable so that the "submit", "cancel" and "check" scripts are on
the PATH.

Submissions through Airavata. The SciGaP project is creating a
set of web services that provide infrastructure for new and
existing Gateways. The goal of the SciGaP project is to decrease

<ToolResource id="gordon" type="GLOBUS"
class="org.ngbw.sdk.tool.DefaultToolResource"
filehandler="${gordon.filehandler}"
processworker="org.ngbw.sdk.tool.SSHExecProcessWorker">
<Parameters>
<Parameter key="runner"

value="org.ngbw.sdk.common.util.GsiSSHProcessRunner" />
<Parameter key="login" value="${xsede.gordon.login}" />
<Parameter key="fileHost" value="${xsede.gordon.host}"/>
<Parameter key="filePort" value="2811"/>
<Parameter key="workspace" value="${xsede.gordon.workspace}"/>
<Parameter key="rc" value="${xsede.gordon.rc}" />
<Parameter key="submit" value="${xsede.gordon.submit}" />
<Parameter key="check" value="${xsede.gordon.check}" />
<Parameter key="cancel" value="${xsede.gordon.cancel}" />
<Parameter key="accountGroup" value="xsede" />
<Parameter key="chargeNumber" value="${cipres.charge.number}" />
<Parameter key="coresPerNode" value="16" />

</Parameters>
</ToolResource>

xsede.gordon.workspace=/projects/ps‐
ngbt/backend/gordon_test_workspace
xsede.gordon.host=trestles‐dm1.sdsc.edu
xsede.gordon.user=
xsede.gordon.login=cipres@gordon.sdsc.edu
xsede.gordon.rc=/projects/ps‐
ngbt/home/cipres/.bash_profile
xsede.gordon.submit=gordon_submit_v2.py
xsede.gordon.check=checkjobs_v2.py
xsede.gordon.cancel=delete_v2.py
gordon.filehandler=org.ngbw.sdk.tool.LocalFileHandler

the overhead for gateway creation and maintenance by
centralizing the core infrastructure/middleware services such as
authentication and job submission required by all Gateway
projects. The software being developed to provide this
infrastructure is Airavata [24], an open source Apache project.

As a first step in consuming the services offered by Airavata, we
are developing code to manage job submission through an
Airavata client called "Airavata-remote". This is a Python script
that can access SciGap functions and data structures. The first
step is to create a new CW ProcessRunner class that uses
Airavata-remote (instead of gsissh or ssh with qsub or slurm) to
communicate with execution hosts. The three daemons mentioned
in the job submission workflow above will be able to use the new
SciGapProcessRunner.

This option can be included in CW-based gateways by
configuring selected ToolResources to use the
SciGapProcessRunner. For example, one could change the
parameter key “runner” in the Gordon ToolResource shown
earlier from:

<Parameter key="runner" value= "org.ngbw.sdk.common.util.GsiSSHProcessRunner" />

to:

<Parameter key="runner" value="org.ngbw.sdk.common.util.SciGapProcessRunner" />

The new process runner will use the Airavata-Remote client, and
if that fails for some reason, the runner will return to the
GsiSSHProcessRunner as a fall back protocol. This will make
submissions robust against any failures using Airavata alone.

In addition to creating the new process runner for SciGaP, the
integration involves the following steps: making batch submission
work through the SciGap API using the AiravataRemote client,
incorporating SSH key management into the gateway setup
process, incorporating SciGap API tokens (authentication and
authorization from gateway to the SciGaP server) into SciGaP
client. The motivating factor for taking advantage of SciGaP for
submissions is improved reliability over gsi-ssh, easier credential
handling, and improved capability for remote resource status
monitoring.

Adding New Codes. Codes run on execution hosts are referred to
as “tools” in the CW. New codes are added to the application in a
two-step process. First, one or more <tool>.xml documents must
be created to describe the new code's usage. These files contain all
the necessary instructions for the application to create the
command line, name any user-supplied input files, and create any
other input files required by a given job run. In CIPRES, for
example, each <tool>.xml specifies creation of a file named
scheduler.conf. The scheduler.conf file specifies the job's
maximum allowed runtime, the number of nodes and cores to use,
etc. CIPRES "submit" scripts expect to find scheduler.conf in the
job's working directory, and use the information to configure the
job run.

The <tool>.xml documents are also central to job submissions by
the CW in that they are used to generate PA1 web forms with
JavaScript validation controls to configure job submission and to
generate validation code on the backend that is shared by PA1 and
PA2. A schematic of the use of the <tool>.xml files is shown in
Figure 3.

The <tool>.xml files reside in a single subdirectory within the
<newgateway>-config directory. Any <tool>.xml file in this
directory can be activated in the application by adding it to the
tool-registry. A sample tool registry entry looks like:

The Tool ID value is determined by the name of the <tool>.xml
file, toolresource specifies the execution host where the job is to
be run, which is also identified in the tool-registry file as
described above.

The tool registry allows tools to be grouped and entire groups can
be enabled/disabled at build time. Individual tools and
ToolResources (i.e. execution hosts) can also be selectively
enabled/disabled at run-time, to temporarily prevent submissions
to a host that is undergoing maintenance or is malfunctioning or to
prevent use of a code that is causing problems.

Customizing the Web Applications.

The Struts-based PA1 application is customized primarily by
modifying the template .jsp and .html files that are distributed
with the application in the directory \scigap\trunk\example
\portal\src\main\webapp. These can be easily edited to add
relevant application-specific text and images; look and feel are
adjusted by modifying the css.

The CW web application requires a static web site of some type
for display of help pages. The application automatically generates
links to help pages based on <staticurl><toolname>.html. The
static site can be simply html pages placed at the appropriate urls
relative to the base url of the static site. For convenience, and to
manage versioning easily, the CIPRES static site is currently
based on the Expression Engine CMS [25], while the NSG static
site is based on Bootstrap [26].

Base urls for the static site, addresses for REST services, REST
support, and REST documents, as well as location of bug tracking
software can all be added as build properties

3. Case Study: Customization for the
NeuroScience Gateway

Individual Gateways often require minor changes to accommodate
the specific needs of the community codes they present. As an
example of how these changes were made, we describe the
adaptation of CW for use by the NeuroScience Gateway (NSG)
[14], a neuroscience modeling gateway. Several changes were
required to adapt the CW to the NSG use case. First, the NSG
requires vetting of individual users prior to prior to allowing
registration. Accommodating this requirement was a simply a
matter of removing the registration links from the browser
interface and posting a vetting form by editing the login.jsp page.
The next change required was handling of input data. Codes
offered by CIPRES require input data that consist of individual
text files containing sequence data. For NSG codes, the input is
models, which typically consist of source and executable code,
along with input text files that vary depending upon the specific
model. The user uploads a gzip-compressed (denoted by the .zip
suffix), directory containing a binary, single file obtained from the
ModelDB database [27]. The compressed upload contains models
with one subdirectory under which the other files and directories
are contained.

To accommodate this non-text file, the JavaScript upload code
presented in the user's browser was modified to convert the binary
.zip file to ASCII using the uuencode process. During job

<Tool id="BEAST_TG"
name="BEAST: Bayesian Evolutionary Anaysis by Sampling Trees"
configfile="pisexml/beast_tg.xml" toolresource="gordon"
commandrenderer="org.ngbw.pise.commandrenderer.PiseCommandRenderer">

</Tool>
lG

submission, this ASCII encoded file is copied to the working
directory for the task on the submission host. The NSG version of
the “submit” script on the submission host then uses the uudecode
utility to convert the ASCII encoded file back into a .zip file, then
the gunzip utility is used to extract the complete subdirectory
structure.

Since the subdirectory created within the working directory can
have an arbitrary name, processing the data correctly required
logic for determining the appropriate subdirectory name. We
initally assumed a single subdirectory was present, as in the
ModelDB database, then added additional logic to ignore MacOS
specific directories. It was also necessary to adapt the system to
tolerate white space in directory names, which is a common
convention for non-Linux system users. This required
modification of both the “submit” script and ibrun (an XSEDE
MPI launcher) on the submission host.

A final modification required by NSG was introduction of a pre-
processing step prior to job submission. The popular code
NEURON [28] employs custom code (.mod files) that must be
preprocessed into C, then compiled into code and placed into a
special library for use during simulation. The design allows
investigators to incorporate custom membrane mechanisms
efficiently into simulations on diverse architectures. To
accommodate this requirement in NSG, an additional compilation
procedure had to be executed prior to job submission. To do this,
the submit script was modified to call a simple shell script that
gathers all .mod files into a single compilation directory, then runs
a pre-processing and compiling tool (nrnivmodl) on that directory
to creates the model library.

4. Future directions
Future development of the CW will aim to provide ever more
flexibility in Gateway creation. One area we are exploring
currently is integrating other SciGaP services into the CW
application. Specific SciGaP features we have currently targeted
are 1) Scalable identity management. Gateway such as NSG must
validate users carefully, because users are allowed to upload and
compile code on the server. The SciGaP project is exploring
scalable identity management solutions, and we hope to
incorporate this solution as a service with the CW. 2) Workflow
capabilities. CIPRES offers codes that perform both sequence
alignment and tree inference. While these two steps are part of
normal phylogenetics workflow, the CW does not support the
configuration and deployment of the two steps as a single process
presently. We hope to be able to use submissions through SciGaP
to add this capability. 3) Interactive visualization is a feature that
is not supported easily by the CW platform at present. We will
explore exposing this capability through services offered by the
SciGaP project.

A second direction for future CW development is making the
platform accessible as a cloud image. The Galaxy project has had
success in developing CloudMan [29], which allows users to
deploy Galaxy quickly on any cloud resource where they have
established credentials, with little additional overhead. This
capability will provide users with more flexibility in where they
run their jobs, so they are not necessarily limited by queue or
resource use policies on publicly available shared resources. We
believe the same model may work for high end users who require
more computational resources than they can receive through a
Gateway community allocation.

5. Conclusions
The basic architecture of the CW has supported thousands of users
of the CIPRES Science Gateway, and has been flexible enough to
allow many adaptations and improvements as traffic and data size
has increased over the years. The addition of ReSTful access
through PA2 makes the package much more flexible in terms of
access. Gateway developers can use the browser interface
supported by PA1 to achieve rapid, out-of-the-box functionality,
or create their own client application that manages data and job
organization to whatever extent is required to meet their user
community’s needs. Our hope is that this package will prove a
simple and convenient way for gateway developers to create a
robust and stable gateway environment that supports large
numbers of users. Our intention is also to make it possible to share
innovations made by our group with existing adopters of the
software, and to integrate improvements and enhancements made
by other groups into the distribution. The architecture of the
system provides significant flexibility in adopting new compute
resources, and will also support query of any available remote
databases as well, should the use case require it.

6. ACKNOWLEDGMENTS
The work described here was supported by NSF DBI-

1262628, NSG DBI-1146949, and NSF ACI-1339856.
Development support was also received from allocation award
TG-DEB090011 from the XSEDE project, which is sponsored by
the National Science Foundation. Initial software development for
the workbench framework was also supported by NIH GM73931-
01.

7. REFERENCES
[1] Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S., and

Pamidighantam, S. (2008) TeraGrid Science Gateways and
Their Impact on Science. Computer 41,(11) 32-41.

[2] (2015) SCI-BUS Gateway Listing. http://www.sci-
bus.eu/wiki/-/wiki/Public/Publications

[3] (2015) XSEDE Gateway Listing.
http://www.xsede.org/web/guest/gateways-listing

[4] Giardine, B., Riemer, C., Hardison, R.C., et al. (2005)
Galaxy: A platform for interactive large-scale genome
analysis. Genome Res. 15,(10) 1451-1455.

[5] McLennan, M. (2008) The Hub Concept for Scientific
Collaboration. https://hubzero.org/resources/12

[6] Rifaieh, R., Unwin, R., Carver, J., and Miller, M.A. (2007)
SWAMI: Integrating Biological Databases and Analysis
Tools Within User Friendly Environment. In Data
Integration in Life Sciences (DILS 07), pp. 48-58.

[7] Chard, R., Sehrish, S., Rodriguez, A., et al. (2014) PDACS: a
portal for data analysis services for cosmological
simulations,. In 9th Gateway Computing Environments
Workshop, pp. 30-33, IEEE Press

[8] (2015) HubZero Powered Sites.

[9] Montella, R., Brizius, A., Elliott, J., et al. (2014) FACE-IT: a
science gateway for food security research. In 9th Gateway
Computing Environments Workshop, pp. 42-46, IEEE Press

[10] Rekapalli, B., Giblock, P., and Reardon, C. (2013) PoPLAR:
Portal for Petascale Lifescience Applications and Research.
BMC Bioinformatics 14,(Suppl 9) S3.DOI:
http://www.biomedcentral.com/1471-2105/14/S9/S3

[11] Miller, M.A., Pfeiffer, W., and Schwartz, T. (2010) Creating
the CIPRES Science Gateway for Inference of Large
Phylogenetic Trees In SC10: Workshop on Gateway
Computing Environments (GCE10)

[12] Dooley, R., Vaughn, M., Stanzione, D., Terry, S., and
Skidmore, S. (2012) Software-as-a-Service: The iPlant
Foundation API. In 5th IEEE Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS).

[13] Cholia, S., Skinner, D., and Boverhof, D. (2010) NEWT: A
RESTful service for building High Performance Computing
web applications. . Gateway Computing Environments
Workshop (GCE) 1-11.DOI:

[14] Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov,
V., Bandrowski, A., Martone, M., and Carnevale, N.T.
(2014) Early experiences in developing and managing the
neuroscience gateway. Journal of Concurrency and
Computation: Practice and Experience, 27,(2) 473–488.DOI:
http://dx.doi.org/10.1002/cpe.3283

[15] Rifaieh, R., Unwin, R., Carver, J., and Miller, M.A. (2007)
SWAMI: Integrating Biological Databases and Analysis
Tools Within User Friendly Environment. In Data
Integration in Life Sciences (DILS 07), pp. 48-58.

[16] Miller, M.A., Pfeiffer, W., and Schwartz, T. (2011) The
CIPRES Science Gateway: a community resource for
phylogenetic analyses. In 2011 TeraGrid Conference:
Extreme Digital Discovery, pp. 1 - 8

[17] Miller, M.A., Pfeiffer, W., and Schwartz, T. (2012) The
CIPRES Science Gateway: enabling high-impact science for
phylogenetics researchers with limited resources. In
Proceedings of the 1st Conference of the Extreme Science
and Engineering Discovery Environment: Bridging from the
eXtreme to the campus and beyond, pp. 1-8, ACM

[18] Miller, M.A., Schwartz, T., Pickett, B.E., et al. (2015) A
RESTful API for Access to Phylogenetic Tools via the
CIPRES Science Gateway. Evolutionary Bioinformatics
11,(4726-EBO-A-RESTful-API-for-Access-to-Phylogenetic-
Tools-via-the-CIPRES-Science-.pdf) 43-48.DOI:
10.4137/EBO.S21501 www.la-press.com/a-restful-api-for-
access-to-phylogenetic-tools-via-the-cipres-science--article-
a4726.

[19] (2013) Jersey. http://jersey.java.net/

[20] Maddison, W.P. and D.R., M. (2008) Mesquite: a modular
system for evolutionary analysis. Version 2.5.
http://mesquiteproject.org

[21] O’Leary, M.A. and Kaufman, S. (2011) MorphoBank:
phylophenomics in the “cloud”. Cladistics 27,(5) 529-
537.DOI: 10.1111/j.1096-0031.2011.00355.x
http://dx.doi.org/10.1111/j.1096-0031.2011.00355.x

[22] Pickett, B.E., Sadat, E.L., Zhang, Y., et al. (2012) ViPR: an
open bioinformatics database and analysis resource for
virology research. Nucleic Acids Res. 40D593-598.

[23] Letondal, C. (2007) PISE (*), a tool to generate Web
interfaces for Molecular Biology programs.
http://www.pasteur.fr/recherche/unites/sis/Pise/

[24] Marru, S., Gunathilake, L., Herath, C., et al. (2011) Apache
airavata: a framework for distributed applications and
computational workflows. In 2011 ACM workshop on
Gateway computing environments., pp. 21-28, ACM Press

[25] (2015) Expression Engine
https://ellislab.com/expressionengine

[26] (2015) Bootstrap CMS.
https://github.com/BootstrapCMS/CMS

[27] Davison, A., Morse, T., Migliore, M., Shepherd, G., and
Hines, M. (2004) Semi-automated population of an online
database of neuronal models (ModelDB) with citation
information, using PubMed for validation. Neuroinform 2,(3)
327-332.DOI: 10.1385/NI:2:3:327
http://dx.doi.org/10.1385/NI%3A2%3A3%3A327

[28] Hines, M.L. and Carnevale, N.T. (2003) The NEURON
simulation environment. In: The Handbook of Brain Theory
and Neural Networks. MIT Press, pp.

[29] Afgan, E., Baker, D., Coraor, N., Chapman, B., Nekrutenko,
A., and Taylor, J. (2010) Galaxy CloudMan: delivering cloud
compute clusters. BMC Bioinformatics 11,(Suppl 12)
S4.DOI: http://www.biomedcentral.com/1471-
2105/11/S12/S4

